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We analyze the lattice equation of motion involving terms up to third order in lattice displacement. The
phenomenological arguments suggest that the force constant D1 of the quadratic term must always be positive
and the force constant B1 of the cubic term may take either positive or negative value. The criterion for stability
of the lattice provides constraint on the relative magnitudes of the three force constants. We solve the equation
of motion using root mean-square spatial fluctuation approximation and obtain the seminonperturbative dis-
persion relation both for positive and negative B1. The nature of phonon density of states curves for positive B1

show some close resemblance with the experimental observations. At very low temperature, the specific heat of
this system to leading order in large positive B1 varies as square root of temperature and it obeys Debye’s T law
in one dimension for small negative B1. At very high temperature, the specific heat may fall below or above its
classical value depending on the relative magnitudes of B1 and D1 for B1�0 and it always falls above its
classical value for B1�0. The lattice model with positive B1 emerges as a good candidate for description of a
monoatomic crystal.
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I. INTRODUCTION

The vibration of atoms in a lattice is anharmonic in na-
ture, which has been verified experimentally long before.1,2

A great deal of theoretical investigations have already been
carried out on anharmonic lattices to address the issue of
effect of anharmonicity on the experimentally observable
quantities such as phonon density of states, specific heats,
elastic constants, and coefficients of thermal expansion of
solid.3–15 In Refs. 8–11, lower order perturbation theory
�LOPT� in leading terms of lattice displacements has been
used to calculate the anharmonic contribution to Helmholtz
free energy and also to the specific heat at low and high
temperature. As it has been pointed out in Ref. 15 the LOPT
is not a good approximation for highly anharmonic lattice.
They have used a self-consistent phonon method14 to show
that the specific heat calculated for various one-dimensional
�1D� potentials agree with the classical predictions in the
high-temperature limit and also predicted using the
temperature-dependent phonon frequencies as measured by
inelastic neutron scattering in their calculation that Cp of Nb
is about 2% lower than the classical value of 3NkB and its Cv
decreases linearly with temperature. The computer simula-
tions have already been carried out in Lenard-Jones lattice16

and Fermi-Pasta-Ulam �FPU� lattice17 to settle the issue of
the behavior of specific heat at low temperature, and their
measurements show that it is lower than the classical value at
low enough temperature and approaches zero when the tem-
perature goes to zero. It has also been stressed upon in Ref.
17 that the specific heat goes to its classical value at very
high temperature.

In this paper we have analyzed the lattice equation of
motion involving terms up to order three in lattice displace-
ment. The stability criteria and phenomenological results

provide constraints on the relative magnitudes and signs of
the three force constants involved in the lattice equation of
motion. We make use of those constraints to solve the equa-
tion of motion in a seminonperturbative manner and obtain
the phonon-dispersion relation. We use here the word “semi-
nonperturbative” to indicate the fact that only linear and cu-
bic terms in the equation of motion have been treated non-
perturbatively over the quadratic one. The phonon density of
states obtained from the dispersion relation shows a close
resemblance with the experimental observations. The agree-
ment of lattice specific heat at high temperature in the lead-
ing and next to leading order with the earlier result8 ensures
the validity of root mean-square spatial fluctuation approxi-
mation �RMSSFA� scheme. We observe the departure from
Debye’s T law in the nonperturbative region of this model
when the force constant of the cubic term is very large at low
temperature. We also observe some interesting features re-
garding whether the lattice specific heat falls above or below
the classical value at very high temperature. Therefore, in
order to place this work in the perspective of previous inves-
tigations it is worth mentioning that the seminonperturbative
approach we have adopted here is essential, especially to
account for the exact variation of phonon density of states of
a lattice with frequency15 and the variation of lattice specific
heat with temperature at very low and high temperatures.

In Sec. II we present the derivation of dispersion relations
and the density of states. Sections III and IV contain the
computation of specific heat for positive and negative values
of force constant of the cubic term, respectively, at high- and
low-temperature limits. Our discussions are contained in Sec.
V. We give a brief outline of obtaining the temperature de-
pendence of anharmonic force constants in Appendix A. Ap-
pendix B contains the computation of quantized energy val-
ues of a quartic oscillator at large quartic coupling limit
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using Bohr-Sommerfield �BS� quantization condition. The
results of some required integrals at low temperature are
given in Appendix C.

II. DISPERSION RELATION AND DENSITY OF STATES

We take a monoatomic symmetric lattice chain in one
dimension and assume that each atom in the lattice can in-
teract anharmonically with its nearest neighbors only. The
equation of motion of the sth atom reads as

m
d2us

dt2 = C1�us+1 + us−1 − 2us� − D1�us+1 + us−1 − 2us�2

+ B1�us+1 + us−1 − 2us�3, �1�

where C1, D1, and B1 are the force constants for linear, qua-
dratic, and cubic interactions of the lattice, respectively. The
leading-order contribution to thermal dilatation comes from
the cubic term of the lattice Hamiltonian,18 and hence, its
coefficient in the Hamiltonian must be negative. It ensures
that the coefficient of the quadratic term of Eq. �1� must be
positive, i.e., D1�0. Since there is no such phenomenologi-
cal restriction on the sign of B1, we shall obtain dispersion
relation and phonon density of states both for positive and
negative values of B1 in Secs. II A and II B.

A. Dispersion relation for B1�0

It is quite clear from Eq. �1� that as D1�0 the atom at an
arbitrary site s of the lattice will experience a repulsive force
that drives it away from its mean position. Therefore the
large value of D1 causes an instability in the crystal, and its
structure may get broken even for a small displacement
about its mean position above certain limiting value of D1.
So the persistence of stable lattice structure requires

C1 + B1�us+1 + us−1 − 2us�2 � D1�us+1 + us−1 − 2us� . �2�

It is noteworthy that at this stage we can apply perturbative
techniques to solve Eq. �1�, assuming the nonlinear terms as
perturbation over the linear one. There are actually two ex-
treme situations when the perturbation expansion in powers
of B1 and D1 carries no meaning at all if we take the nonlin-
ear terms as small over the linear one from the very outset. In
one hand as we lower the temperature the amplitude of os-
cillation of each atom around its minimum decreases. It is
also evident from our evaluation in Appendix A that B1
�B1�0� increases and D1 decreases as we decrease the tem-
perature. Consequently one can treat the quadratic term in
the equation of motion as a perturbation over the linear one
provided the numerical value of D1 at very low temperature
is very small. However, if B1 attains a very large value at low
enough temperature, one cannot treat the cubic term as a
perturbation over the linear one. On the other hand, as we
raise the temperature, since each atom in the crystal vibrates
with large amplitude around its minimum, one cannot treat
the cubic term as being small compared to the linear one in
spite of B1 being attained a very small value at such high
temperature �Appendix A�. Furthermore, since D1 attains a
very large value at high temperature �Appendix A� one can-

not treat the quadratic term too as a perturbation over the
linear one at such a high temperature. In the following we
shall look for a solution of Eq. �1� that does not make refer-
ence to any particular value of B1 and C1. Moreover, in the
following analysis of this subsection we shall take the qua-
dratic term as small compared to rest ones of Eq. �1�, and we
shall show at the end that this choice in any way is not
incompatible with the inequality of Eq. �2�.

We suppose that the solution of Eq. �1� be of the form
us�t�=u�t�cos �as, where � is the one-dimensional wave
vector, a is the lattice spacing, and u�t� satisfies the follow-
ing equation:

m
d2u

dt2 cos �as + 2C1�1 − cos �a�u cos �as

− 4D1�1 − cos �a�2u2 cos2 �as

+ 8B1�1 − cos �a�3u3 cos3 �as = 0. �3�

In order to simplify this equation we shall adopt here
RMSSFA. We are actually interested here to find the solution
of us�t� at the wave-vector scale �. For this we keep the
factor cos �as aside, which is a common factor to all terms
of Eq. �3� and put the rest s-dependent factors of each term
of Eq. �3� inside a circumflex. The circumflex �¯� denotes
the root mean-square of the spatial fluctuations over the en-
tire lattice. The resulting equation, thus, physically denotes
an effective equation of the mode of wave vector �, where
the effects of fluctuations of the modes having wave vectors
� and other than � have been included in the equation
through their spatial averages denoted by circumflex. Since
we are taking spatial average of the fluctuations around the
mode of wave vector �, it may appear that we are somehow
eliminating the discrete nature of the lattice. In fact the factor
cos �as, which we have kept aside and about which we are
averaging the spatial fluctuations of other modes, will take
care of the discrete character of the lattice, and hence, us�t�
represents a standing-wave solution in a discrete geometry.
After the implementation of RMSSFA, Eq. �3� takes the fol-
lowing form:

m
d2u

dt2 + 2C1�1 − cos �a�u − 4D1�1 − cos �a�2�cos �as�u2

+ 8B1�1 − cos �a�3�cos2 �as�u3 = 0, �4�

where the formal definition of the circumflex is as follows:

�f�s�� =� 1

N
�
s=0

N−1

f�s�2. �5�

Here N denotes the number of sites in the lattice. Following
this definition the required averages read as

�cos �as� =
1
�2

and �cos2 �as� =�3

8
. �6�

Consequently, Eq. �4� takes the form
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d2u

dt2 = − �0
2u +

3

2
g1

2u2 − 2g2u3, �7�

where

�0
2 = �h

2�1 − cos �a�, g1
2 =

4�2

3m
D1�1 − cos �a�2,

g2 =
�6

m
B1�1 − cos �a�3 and �h = �2C1/m . �8�

Equation �7� represents the classical equation of motion of a
particle in an anharmonic potential

V�u� =
m

2
��0

2u2 − g1
2u3 + g2u4� . �9�

We shall now solve Eq. �7� assuming g1
2�1 and taking the

quadratic term as a perturbation over the rest. To find the
solution of the unperturbed equation of motion, we first set
g1

2=0 and u�t�=u�0��t� in Eq. �7�. The resulting equation,
thus, becomes

d2u�0�

dt2 = − �0
2u�0� − 2g2u�0�3

. �10�

We integrate this equation once with respect to t,

�du�0�

dt
	2

= ��0�2
v2 − �0

2u�0�2
− g2u�0�4

, �11�

where the integration constant ��0�2
v2 serves as square of the

average velocity of an atom at its mean position of oscilla-
tion and ��0� being its frequency of oscillation. We now write
this differential equation in terms of two new variables y
=u�0� /A and �=��0�t,

�dy

d�
	2

=
v2

A2 −
�0

2

��0�2 y2 −
g2A2

��0�2 y4, �12�

where the amplitude of oscillation A is yet to be determined
as a function of v, �, and the force constants B1 and C1.
Equation �12� is the same differential equation satisfied by
the Jacobi elliptic function Cn�� ,k2�,19 and the comparison
gives the following set of relations:

1 − k2 =
v2

A2 , 1 − 2k2 =
�0

2

��0�2 , and k2 =
g2A2

��0�2 . �13�

Here k2 is known as the modulus of Jacobi elliptic function.
The solution of the unperturbed differential equation 
Eq.
�10�� obtained in terms of Jacobi elliptic function, therefore,
reads as

u�0��t� = ACn���0�t,k2� . �14�

Here we have three unknown quantities ��0�, k2, and A. We
solve them as a function of v, �0, and g2 using Eq. �13�.
Further using Eq. �8� we write them as functions of � and �.
The results are as follows:

��0�2
= �0

2
X��,�� + Y��,��� , �15�

k2 =
X��,��

1 + X��,�� + Y��,��
, �16�

A2 = v21 + X��,�� + Y��,��
1 + Y��,��

, �17�

where

� =
B1v

2

C1
, �18�

X��,�� = �6��1 − cos �a�2, �19�

Y��,�� = �1 + X2��,�� . �20�

Eliminating v2 from Eqs. �15� and �17� we can write ��0�2
as

a function of A. This is one of the characteristic features of a
nonlinear oscillation where the frequency depends on the
amplitude of oscillation. The solution of the linearized ver-
sion of this model and even other models16,17 lacks this exact
nonperturbative behavior of ��0� as a function of A. For
Im�t��K� /��0�, us

�0��t� 
=u�0��t�cos �as� is Fourier expanded
as19 us

�0��t�=�0
�An
cos��nt−�as�+cos��nt+�as��, where An

= 	
kK

qn+1/2

1+q2n+1 and �n= �2n+1� 	��0�

2K . Here q=exp�−	K� /K�, with
K and K being the Jacobi elliptic integrals of first kind of k2

and 1−k2, respectively. So us
�0��t� represents a standing wave

formed by the infinite superposition of left- and right-moving
progressive waves of varying frequencies ��n� and ampli-
tudes �An�. It is evident from the dispersion relation 
Eq.
�15�� that ��0� is an even function of � and it has maxima at
�= 


	
a . Hence the first Brillouin zone lies in the region

− 	
a ���

	
a .

Next to obtain the solution to order g1
2 we set

u = u�0� + u�1� + 0�g1
4� �21�

in Eq. �7�, where

u�0��t� = ACn��t,k2� , �22�

� = ��0� + ��1� + 0�g1
4� . �23�

Here u�1� and ��1� must be of order g1
2. We substitute all these

in Eq. �7� and using Eq. �13� obtain the equation of u�1� as

ü�1� + ��0
2 + 6g2u�0�2

�u�1� = 2��0���1��1 − 2k2�u�0�

+
4k2

A2 ��0���1�u�0�3
+

3

2
g1

2u�0�2
.

�24�

Here we have retained terms to order g1
2 only. At B1→0

limit, g2→0, k2→0, ��0�→�0, and Cn��t ,k2�→cos��0t�.
Consequently the first term on the right-hand side �rhs� of
Eq. �24� behaves as a resonance term and should be absent
from the equation because the magnitude of oscillation in a
closed system cannot increase in itself in the absence of any
external source of energy.20 So, the absence of resonance
demands
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��1� = 0. �25�

Consequently, the Eq. �24� takes the form

ü�1� + ��0�2

1 + 4k2 − 6k2Sn2��t,k2��u�1� =

3

2
g1

2A2Cn2��t,k2� ,

�26�

where we have used Eqs. �22� and �13�. Solving this linear
inhomogeneous differential equation with variable coeffi-
cient we obtain

u�1� =
g1

2A2

2��0�2 
1 + �1 − 2k2�Sn2��t,k2�� . �27�

To obtain the solution to order g1
4, we substitute

u = u�0� + u�1� + u�2� and � = ��0� + ��2� �28�

in Eq. �7� and get the equation for u�2� as

ü�2� + ��0�2

1 + 4k2 − 6k2Sn2��t,k2��u�2� = l1Cn��t,k2�

+ l2�4Cn3��t,k2� − 3Cn��t,k2�
 − l3�16Cn5��t,k2�

− 10Cn��t,k2�
 , �29�

where

l1 = A���0���2��2 − k2� +
3g1

4A2

16��0�2 �10 − 29k2 + 40k4 − 32k6�� ,

l2 = A�k2��0���2� −
3g1

4A2

8��0�2 �1 − 2k2�2� ,

l3 =
3k2g1

4A3

32��0�2 . �30�

Here we have used Eqs. �22�, �27�, and �13� to arrive at Eq.
�29�. u�2� and ��2� must be of order g1

4 and we have retained
terms in Eq. �29� to order g1

4 only. At B1→0 limit,
4Cn3��t ,k2�−3Cn��t ,k2�→cos 3�0t and 16Cn5��t ,k2�
−10Cn��t ,k2�→cos 5�0t+5 cos 3�0t. Therefore, second
and third terms on the right-hand side of Eq. �29� are per-
fectly nonresonant at this limit. However, the first term on
the right-hand side is a resonance term at this limit. To en-
sure the absence of resonance in a closed system we set the
coefficient l1 to zero and the value of ��2�, thus, obtained
reads as

��2� = −
3g1

4A2

16��0�3
�2 − k2�

�10 − 29k2 + 40k4 − 32k6� . �31�

Since for our present purpose we are interested only in find-
ing the dispersion relation of the lattice oscillation and its
corrections to order D1

2, we leave the problem of solving the
equation of motion of u�2� for our future investigations. The
dispersion relation to order D1

2, thus, reads as

� = ��0� + ��2� + 0�D1
3� = ��0�
1 − �1

2W��,�� + 0��1
3�� ,

�32�

where

�1 =
D1v
C1

, �33�

W��,�� = � �0
2

�h��0�	4�1 + X��,�� + Y��,��
1 + Y��,��

	
��10 − 29k2 + 40k4 − 32k6

6�2 − k2�
	 . �34�

To discuss the validity of our perturbation series in pow-
ers of �1 we first write the Eq. �2� as

1 + � � �1. �35�

So the choice, that �1�1, is sufficient to preserve this in-
equality for any values of � ranging from 0 to �. At the same
time as �1�1, the perturbation series in powers of �1 is also
justifiable.

Under the cyclic boundary condition us�t�=us+N�t�, �aN
=2	p, where p= 
1, 
2, . . . , 
N. Therefore the number of
modes between � and �+d� is 
���d�= �Na /	�d�, where �
lies in the region 0���

	
a .

We have plotted the dispersion curves for different com-
binations of the coupling constants � and �1 in Fig. 1. Cor-
responding plots of the density of states as a function of
frequency are depicted in Fig. 2. In Fig. 1�a� we keep �1
fixed at 0.1 and varied � from 0.01 to 0.3. The dispersion
curves do not show much variation with � at low �. How-
ever, the variation with � becomes more prominent at rela-
tively higher values of �. �max, the maximum value of the
frequency that generally occurs at the zone boundary �=	 of
the lattice, increases with the increasing �. The correspond-
ing plot of density of states as a function of frequency is
shown in Fig. 2�a�. For � lying in the range 0.01���0.05,
the occurrence of a maxima at low frequency followed by a
minima at relatively higher frequency has been observed. As
� increases, the maxima and minima are found to be red-
shifted and blueshifted, respectively. Moreover, the minima
get flattened with increasing � and this particular feature is
found to be more prominent in other two combinations.

We have plotted the dispersion curves in Figs. 1�b� and
1�c� for different values of �1 ranging from 0.1 to 0.9 and for
� fixed at 0.2 and 0.1, respectively. �max is found to increase
with increasing �. Dispersion curves are more or less insen-
sitive to the variation of �1 at relatively lower values of �.
However, undulations in the dispersion curves are observed
at relatively higher values of � and those become more
prominent with increasing �1. The effects of undulations at
relatively higher values of �1 in the dispersion curve are
readily observed on the corresponding phonon density of
states curves in Figs. 2�b� and 2�c�. The effects of those
actually occur in the form of maxima and relatively flatter
minima at low- and high-frequency sides, respectively. This
similar kind of behavior of the density of states with fre-
quency in Al was observed experimentally22 long before. In
both Figs. 2�b� and 2�c� as �1 increases the maxima becomes
sharply peaked and the minima becomes relatively less flat.
Moreover, for a fixed lambda as �1 increases the maxima get
redshifted. The similar kind of behavior of density of states
with frequency in Nb crystal was reported in Ref. 15 with
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decreasing temperature. The plots in Fig. 2 also reflect the
fact that the states are mostly dense near the boundary of the
Brillouin zone. It is important to note that unlike the density
of states plot of three-dimensional �3D� lattice obtained in
experiment, the density of states has nonzero value at �=0 in
Fig. 2. For 3D isotropic solids,24 the density of states in �
space is proportional to 4	�2, and since �=0 at �=0, the
state density must be zero at �=0. Therefore, it is a special
feature of 1D solids where state density remains nonzero
even at �=0.

The density of states exhibits typical behavior such as the
appearance of a peak at lower frequency region in Figs. 2�a�
and 2�b� and a significant decrease at higher frequency re-
gion in Figs. 2�b� and 2�c�. Since 
��� is inversely propor-
tional to the group velocity vg and vg= d�

d� , the origin of its
typical behavior lies in the physical reasons behind the typi-

cal nature of variation of � with � in Fig. 1. To explain
physically the nature of the dispersion curves we rewrite Eq.
�7� in terms of new dimensionless variables ū=u /v and
t̄=�ht as

d2ū

dt̄2
= − �1 − cos �a�ū + �2�1�1 − cos �a�2ū2

− �6��1 − cos �a�3ū3. �36�

Since the linear and the cubic terms occur with negative sign
on the rhs of Eq. �36� those two together act as an effective
restoring acceleration that drives the atom toward its mean
position of oscillation. Unlike linear and cubic terms the qua-
dratic term acts as a repulsive acceleration that drives the
atom away from its mean position of oscillation. It is clear

FIG. 1. �Color online� Plot of dispersion
curves for B1�0 within the first Brillouin zone.
Dotted line represents the dispersion curve for
harmonic lattice, i.e., for �=0 and �1=0.

FIG. 2. �Color online� Plot of density of states
for B1�0 within the first Brillouin zone. Dotted
line represents the density of states plot for har-
monic lattice, i.e., for �=0 and �1=0.
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that for a fixed ū there is always a competition between the
quadratic and the rest two terms on the rhs of Eq. �36�. For a
given value of � and �1 and for a fixed ū, when this compe-
tition is close enough in certain region of �, the atom will
move with a slow restoring acceleration and it results in the
slow variation of its frequency of oscillation � with �. The
“closest competition” occurs at a point where d2� /d�2=0,
the point of inflexion at which the curvature of the dispersion
curve changes from negative to positive value as � moves
past this point from low to high value. Therefore, at the point
of closest competition atom moves with minimum restoring
acceleration and consequently the rate of variation of � with
� attains its lowest value, which results in minimum group
velocity and, thus, leading to a peak in the density of states.
For a given value of �, as �1 increases the magnitude of the
repulsive acceleration increases and the point of closest com-
petition gets shifted relatively toward smaller values of �.
Moreover, for a fixed �1, as � increases the coefficient of the
cubic term increases, thereby, shifting the point of closest
competition toward relatively larger �. As � increases be-
yond the point of closest competition the coefficient of the
cubic term for a given ū contributes significantly over the
same of the quadratic one, and consequently, the restoring
acceleration increases rapidly and it results in the rapid in-
crease in � with �. Moreover, since the factor 1−cos �a
occurs with power of 3 in the coefficient of the cubic term,
the restoring acceleration increases more rapidly with � be-
yond �a=	 /2. Since the lattice has a discrete geometry,
there is a minimum wavelength 2a that can be excited in
such a geometry, and it occurs at the boundary of the Bril-
louin zone where � attains its maximum value.23 Therefore,
as � increases beyond the point of closest competition, it
must pass through another point of inflexion where the cur-
vature changes from positive to negative value and, conse-
quently, at the point of inflexion the group velocity attains its
maximum value. We henceforth indicate this second point of
inflexion as the point of “maximum group velocity.” For a
given � lying between the point of closest competition and
the point of maximum group velocity, the restoring accelera-
tion increases with the increase in �, and it results in the
rapid increment of � with � in the region between those two
points of the dispersion curve. As a result, the group velocity
increases rapidly with � in the region between those two
points, and it leads to a significant decrease in the density of
states at higher frequency.

The dispersion curve in general has two points of inflex-
ion: The point of closest competition and the point of maxi-
mum group velocity, where vg attains its minimum and maxi-
mum values, respectively. Plots of Fig. 1 suggest that
harmonic or the linear part of acceleration dominates in the
region 0��a�	 /4. Depending on the relative magnitudes
of � and �1 the quadratic and the cubic part of the accelera-
tion dominate roughly in the region 	 /4��a�	 /2 and be-
yond the point �a=	 /2, respectively. For �� ,�1�= �0.1,0.9�,
�0.1,0.7�, and �0.2,0.9� the quadratic term dominates so in-
tensely over the rest two terms of the acceleration that some
part of each of those dispersion curves falls below the har-
monic one beyond �a�	 /4, and consequently, vg at the
point of closest competition of each of those curves falls
much below its value at the corresponding point of the har-

monic curve and, thus, resulting in the appearance of promi-
nent peak in the density of states. However, for ��0.2 and
�1�0.7 the cubic term dominates over the quadratic one of
the acceleration so intensely that each of those dispersion
curves falls above the harmonic one roughly beyond
�a�1.0, and consequently, vg at the point of maximum
group velocity of each of those curves falls much above its
value at the corresponding point of the harmonic curve and,
thus, resulting in the significant decrease in the state densi-
ties at higher frequencies.

B. Dispersion relation for B1�0

The dispersion relation and the density of states of the
lattice have some interesting features when B1�0. We first
rewrite Eq. �1� as

m
d2us

dt2 = C1�us+1 + us−1 − 2us� − D1�us+1 + us−1 − 2us�2

− B1�us+1 + us−1 − 2us�3, �37�

where B1�0. It is clear that the term proportional to C1 is a
restoring force and those proportional to D1 and B1 are re-
pulsive forces. The repulsive forces drive the atoms in the
crystal away from their mean positions of oscillation. The
persistence of stable lattice structure requires

B1�us+1 + us−1 − 2us�2 + D1�us+1 + us−1 − 2us�1 � C1.

�38�

We assume the solution of Eq. �37� be of the form us�t�
=u1�t�cos �as and adopt RMSSFA. Equation �37� finally
takes the following form:

d2u1

dt2 = − �0
2u1 +

3

2
g1

2u1
2 + 2g2u1

3. �39�

The equation represents a classical equation of motion of a
particle in an anharmonic potential

V1�u1� =
m

2
��0

2u1
2 − g1

2u1
3 − g2u1

4� . �40�

We shall now solve Eq. �39� assuming g1
2�1 and taking

the quadratic term as perturbation over the rest. To obtain the
solution of the unperturbed part we set g1

2=0 and u1�t�
=u1

�0��t� in Eq. �39�. The resulting equation, thus, becomes

d2u1
�0�

dt2 = − �0
2u1

�0� + 2g2u1
�0�3

. �41�

We integrate this equation once with respect to t and write

the resulting equation in terms of the new variables: y1=
u1

�0�

A1

and �=�1
�0�t. The equation, thus, takes the form

�dy1

d�
	2

=
v2

A1
2 −

�0
2

�1
�0�2 y1

2 +
g2A1

2

�1
�0�2 y1

4, �42�

where v2 is the constant of integration. �1
�0� and A1 are the

frequency and amplitude of oscillation, respectively, and
those are yet to be determined as functions of �, v, and the
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force constants of the theory. Equation �42� is the same dif-
ferential equation satisfied by the Jacobi elliptic function
Sn�� ,k1

2�,19 and the comparison gives the following set of
relations:

A1
2 = v2, 1 + k1

2 =
�0

2

�1
�0�2 , and k1

2 =
g2A1

2

�1
�0�2 . �43�

k1
2 is known as the modulus of Jacobi elliptic function. The

solution of the unperturbed differential equation, thus, ob-
tained reads as

u1
�0��t� = A1Sn��1

�0�t,k1
2� , �44�

where

�1
2 = �0

2�1 −
1

2
X��,��� , �45�

A1 = v , �46�

k1
2 =

X��,��
2 − X��,��

. �47�

To obtain the solution to order g1
2 we set

u1 = u1
�0� + u1

�1� + 0�g1
4� �48�

in Eq. �39�, where

u1
�0��t� = A1Sn��1t,k1

2� , �49�

�1 = �1
�0� + �1

�1� + 0�g1
4� . �50�

Here u1
�1� and �1

�1� must be of order g1
2. We substitute all these

in Eq. �39� and using Eq. �43� obtain the equation of u1
�1� as

ü1
�1� + ��0

2 − 6g2u1
�0�2

�u1
�1� = 2�1

�0��1
�1��1 + k1

2�u1
�0�

−
4k1

2

A1
2 �1

�0��1
�1�u1

�0�3
+

3

2
g1

2u1
�0�2

.

�51�

Here we have retained terms to order g1
2 only. At B1→0

limit, g2 and k1
2 go to zero, �1

�0�→�0 and Sn��1t ,k1
2�

→sin��0t�. As a result the first term on the right-hand side of
Eq. �51� behaves as a resonance term of this equation. The
absence of resonance requires

�1
�1� = 0. �52�

Equation �51�, thus, takes the form

ü1
�1� + �1

�0�2

1 + k1

2 − 6k1
2Sn2��1t,k1

2��u1
�1� =

3

2
g1

2A1
2Sn2��1t,k1

2� ,

�53�

where we have used Eqs. �49� and �43�. The solution of this
linear inhomogeneous differential equation with variable co-
efficient reads as

u1
�1� =

g1
2A1

2

2�1 − k1
2�2�1

�0�2 
2 − �1 + k1
2�Sn2��1t,k1

2�� . �54�

To obtain the solution to order g1
4 we substitute

u1 = u1
�0� + u1

�1� + u1
�2� and �1 = �1

�0� + �1
�2� �55�

in Eq. �39� and get the equation for u�2� as

ü�2� + �1
�0�2


1 + k1
2 − 6k1

2Sn2��1t,k1
2��u1

�2�

= j1Sn��1t,k1
2� + j2�3Sn��1t,k1

2� − 4Sn3��1t,k1
2�


+ j3�16Sn5��1t,k1
2� − 10Sn��1t,k1

2�
 , �56�

where

j1 = A1��2 − k1
2��1

�0��1
�2� +

3g1
4A1

2

16�1 − k1
2�4�1

�0�2

��15 + 2k1
2 − 13k1

4�� ,

j2 = A1���0���1�k1
2 +

3�1 + k1
2��1 + 3k1

2�g1
4A1

2

8�1 − k1
2�4�1

�0�2 � ,

j3 =
3�1 + k1

2�2g1
4A1

3

32�1 − k1
2�4�1

�0�2 . �57�

Here we have used Eqs. �49�, �54�, and �43� to arrive at Eq.
�56�. u1

�2� and �1
�2� must be of order g1

4 and we have retained
in Eq. �56� terms to order g1

4 only. At B1→0 limit,
3Sn��1t ,k1

2�−4Sn3��1t ,k1
2�→sin 3�0t and 16Sn5��1t ,k1

2�
−10Sn��1t ,k1

2�→sin 5�0t−5 sin 3�0t. Therefore the second
and third terms on the right-hand side of Eq. �56� are per-
fectly nonresonant at this limit. However the first term on the
right-hand side acts as a resonance term at this limit. To
ensure the absence of resonance in a closed system we set
the coefficient j1 to zero, and the value of �1

�2� so obtained
reads as

�1
�2� = −

3g1
4A1

2

16�1
�0�3

�2 − k1
2��1 − k1

2�4
�15 + 2k1

2 − 13k1
4� . �58�

The dispersion relation to order D1
2, thus, reads as

�1 = �1
�0� + �1

�2� + 0�D1
3� = �1

�0�
1 − �1
2W1��,�� + 0��1

3�� ,

�59�

where

W1��,�1� = � �0
2

�h�1
�0�	4 15 + 2k1

2 − 13k1
4

6�2 − k1
2��1 − k1

2�4 . �60�

We write the inequality in Eq. �38� in terms of � and �1 as

� + �1 � 1. �61�

It is clear that in order to preserve this inequality both � and
�1 separately must be less than 1. It justifies the perturbative
expansion of �1 in powers of �1.

We have plotted the dispersion curve and the correspond-
ing density of states as a function of frequency in Figs. 3 and
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4, respectively, for different combinations of � and �1. Plots
of dispersion curves for � fixed at 0.05 and for different �1
ranging from 0.001 to 0.02 are depicted in Fig. 3�a�. The
corresponding density of states curves are plotted in Fig.
4�a�. No significant variation in the dispersion as well as in
the density of states with �1 is observed in this range of
values of �1. However, if �1 increases beyond 0.02, we get
unphysical consequences such as the emergence of negative
density of states. This is due to the fact that the perturbation
series of �1 to order �1

2 
Eq. �59�� no longer remains conver-
gent beyond �1=0.02. To get rid of this unphysical behavior
of density of states beyond this range of �1, we have to
incorporate corrections beyond second order in �1 to �1. In
Fig. 3�b� dispersion curves have been plotted for �1 fixed at
0.001 and for different values of � ranging from 0.01 to 0.05.
�max has been found to decrease with increasing �. This
particular feature is opposite to what has been observed in

Fig. 1 for B1�0. The corresponding density-of-states curves
in Fig. 4�b� have been found to increase sharply at relatively
lower frequency with increasing �. This feature is just oppo-
site to what has been observed in Fig. 2 for B1�0.

To explain physically the nature of the dispersion curves
and the density of states plots, we rewrite Eq. �39� in terms
of new dimensionless variables ū1=u1 /v and t̄=�ht as

d2ū1

dt̄2
= − �1 − cos �a�ū1 + �2�1�1 − cos �a�2ū1

2

+ �6��1 − cos �a�3ū1
3. �62�

Unlike the linear term, two nonlinear terms together act as a
repulsive acceleration, and as a result the effective restoring
acceleration for a given � and �1 and fixed ū1 increases
slowly with �. Consequently, the frequency of oscillation �1
increases slowly with the increase in �, and the correspond-
ing dispersion curve falls below the harmonic one for any
nonzero positive � and �1. It results in the slow decrease in
the group velocity with � and, thus, leading to an increase in
the density of states with frequency.

III. SPECIFIC HEAT FOR B1�0

A. Low-temperature specific heat

The specific heat of this system, when B1�0, exhibits an
interesting feature at the low-temperature limit. Our evalua-
tion in Appendix A shows that as we reduce the temperature
to a very low value, B1 increases and D1 decreases. We imag-
ine a situation when ���1 at low enough temperature and
this supposition is also consistent with the inequality of Eq.
�2�. When B1�0, Eq. �7� suggests that each atom of the
crystal is moving under the influence of an anharmonic po-
tential V�u� given by Eq. �9�. Since according to our suppo-
sition, quartic term is dominant compared to the cubic one of
the potential we can safely drop the cubic term in V�u� with-
out losing any generality of the problem. The nth �n�1�
level energy of a particle in the potential V�u�, obtained us-
ing the Bohr-Sommerfield quantization rule �see Appendix
B�, reads as

�n��� = ��1 − cos �a�n4/3 + 0� 1

�1/3	 , �63�

where

� = �81�6	2�4C1�

8v2

�4�3/4�
�4�1/4�

	1/3

. �64�

The mode of wave vector � at finite temperature T has an
average energy

�̄��,�� = −
�

��
ln Z��,�� , �65�

where Z�� ,��=�n=0
� exp−��n��� and �= 1

kBT , kB being the
Boltzmann constant. We define TD= 2�

kB
, a characteristic tem-

perature of the system, known as anharmonic Debye
temperature. At very low temperature when T�TD,
exp�−��n���
�1 for n�0, and we can approximate ln Z by

FIG. 3. �Color online� Plot of dispersion curves for B1�0
within the first Brillouin zone. Continuous line represents the dis-
persion curve for harmonic lattice, i.e., for �=0 and �1=0.

FIG. 4. �Color online� Plot of density of states for B1�0 within
the first Brillouin zone. Continuous line represents the density of
states plot for harmonic lattice, i.e., for �=0 and �1=0.
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retaining only the leading terms of its low-temperature ex-
pansion,

ln Z��,�� = − ��0��� + ln�1 + �
n=1

�

e−��n���	 = − ��0���

+ �
n=1

�

exp�− ��n���
 + 0��
n=1

�

exp�− ��n���
	2

.

�66�

Here �0��� denotes the zero-point energy of the mode of
wave vector �. In general the zero-point energy of a system
cannot be obtained from the Bohr-Sommerfield quantization
condition. Since this energy does not contribute to the spe-
cific heat of the system, its explicit form as a function of � is
not required for our present purpose. The average energy

Ē = �
−	/a

	/a

d�
����̄��� = Ē0 −
N

	

�

��
�
n=1

� �
0

xn dx
�x

e−x

�xn − x
,

�67�

where the average zero-point energy

Ē0 = �
−	/a

	/a

d�
����0��� �68�

and xn= �TD /T�n4/3. Here we have used Eqs. �63� and �66� to
arrive at the final step of this equation. At low-temperature
limit when T�TD, xn→� and the leading contribution of the
integral

�
0

xn dx
�x

e−x

�xn − x
�

1
�xn

�
0

� dx
�x

e−x =�	

xn
. �69�

Hence, the average energy to leading order of low-
temperature �T�TD� expansion reads as

Ē = Ē0 +
NkBT
�4	

� T

TD
	1/2

��2/3� , �70�

where ��2 /3� denotes the Riemann’s zeta function with ar-
gument 2/3. Finally, the specific heat

CL = � �Ē

�T
	

L,N
=

3NkB

�16	
� T

TD
	1/2

��2/3� . �71�

Here CL varies as �T at the leading order. This result departs
significantly from Debye’s T law of lattice specific heat at
low temperature. The later result is obtained at the leading
order of the low-temperature expansion in a lattice model,
where the anharmonic terms in the equation of motion or in
the Hamiltonian is treated as a perturbation over the har-
monic one.8 Generally in a lattice when the wave vector � is
very small the energy �n��� for n�0 varies as � at large
harmonic limit and as �2 
Eq. �63�� at large anharmonic cou-
pling limit. Consequently, the quantity exp�−�n /kBT
 at large
anharmonic coupling case contributes more dominantly com-
pared to the harmonic case at �→0 and T→0 limits. As a
result, the low-temperature specific heat in the case of large
anharmonic coupling grows more rapidly with temperature

compared to the case of large harmonic coupling.

B. High-temperature specific heat

The evaluation in Appendix A indicates that as we raise
the temperature of the system, B1 decreases and D1 in-
creases. Moreover, as we raise the temperature, the mean
thermal energy of each atom of the lattice increases, and
consequently, the amplitude of oscillation v of each atom
around its mean position increases. However in order to pre-
serve the inequality in Eq. �35�, both D1 and v cannot in-
crease indefinitely to a very large value. Therefore in a stable
lattice both � and �1 can be chosen much lesser than 1 at
very high temperature. Since each atom of the lattice is con-
fined to a one-dimensional anharmonic potential V�u� 
Eq.
�9��, its Hamiltonian

H =
p2

2m
+

m

2
��0

2u2 − g1
2u3 + g2u4� . �72�

At very high temperature since �, �1�1, we can treat both
cubic and quartic terms as perturbation over the quadratic
one of the Hamiltonian. A straightforward calculation using
the time-independent perturbation theory in quantum
mechanics21 gives the energy of the nth state to order g4 and
g1

4 as

�n��� = b0 + b1n + b2n2 + b3n3 + 0�g6,g1
6� , �73�

where

b0 =
��0

2
+

3�2g2

8m�0
2 −

11�2g1
4

32m�0
4 −

21�3g4

32m2�0
5 + 0�g6,g1

6� ,

b1 = ��0 +
3�2g2

4m�0
2 −

15�2g1
4

16m�0
4 −

59�3g4

32m2�0
5 + 0�g6,g1

6� ,

b2 =
3�2g2

4m�0
2 −

15�2g1
4

16m�0
4 −

51�3g4

32m2�0
5 + 0�g6,g1

6� ,

b3 = −
17�3g4

16m2�0
5 + 0�g6,g1

6� . �74�

The partition function

Z��,�� = �
n=0

�

exp�− ��n���
 = exp�− ��b0 + b1n + b2n2

+ b3n3�
 �75�

of the � wave-vector mode at temperature T. We expand
exp�−��b2n2+b3n3�
 to order g1

4 and g4,

Z��,�� = e−�b0�1 −
�b2

b1
2

�2

��2 +
�b3

b1
3

�3

��3 +
�2b2

2

2b1
4

�4

��4

+ 0�g6,g1
6��Z0��,�� , �76�

where
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Z0��,�� = �
n=0

�

e−�b1n =
1

1 − e−�b1
. �77�

Now we use the result
�Z0

�� =b1�Z0−Z0
2� in Eq. �76� and obtain

the average energy of the k wave-vector mode as

�̄��� = −
� ln Z

��

= b0 + b1�Z0 − 1� + b2�1 − 3Z0 + 2Z0
2�

− �b1b2Z0�3 − 7Z0 + 4Z0
2� − b3�1 − 7Z0 + 12Z0

2 − 6Z0
3�

+ �b1b3Z0�7 − 31Z0 + 42Z0
2 − 18Z0

3�

+ �b2
2Z0�9 − 37Z0 + 48Z0

2 − 20Z0
3�

+
1

2
�2b2

2b1Z0�9 − 83Z0 + 218Z0
2 − 224Z0

3 + 80Z0
4�

+ 0�g6,g1
6� . �78�

Since at high temperature �b1�1, we expand Z0 as

Z0 =
1

�b1
�1 +

�b1

2
+

��b1�2

12
−

��b1�4

720

+
��b1�6

30 240
−

��b1�8

1 209 600
+ ¯� . �79�

Using this high-temperature expansion of Z0 in Eq. �78� we
obtain

�̄��� = − �12b3 −
20b2

2

b1
	� 1

�b1
	3

− �2b2 − 3b3 −
68b2

2

b1
	� 1

�b1
	2

+ �b1 −
72b2

2

b1
	 1

�b1

+ �b0 −
b1

2
+

b2

3
−

b3

4
+

24b2
2

b1
	

+ � b1

12
−

b2

6
+

7b3

60
+

b2
2

9b1
	�b1 + � b2

40
−

3b3

80
−

39b2
2

20b1
	

���b1�2 − � b1

720
−

b2

180
−

b3

420
+

2273b2
2

7560b1
	��b1�3

+ 0
g6,g1
6,��b1�4� . �80�

The average energy of the system at temperature T reads as

Ē = �
−	/a

	/a

dk
�k��̄�k� =
N

2	
�

−	

	

d��̄��� . �81�

Using Eqs. �8�, �74�, and �80� in Eq. �81� and performing the
integration over �, we obtain

Ē

N��h
=

27�2

2
� kBT

��h
	3

+ �5�1
2

6
−

3�6�

8
+

324�2�2

5	
	

�� kBT

��h
	2

+ �1 −
1215�2

32
	� kBT

��h
	

+ �3�6�

32
−

�1
2

8
+

351�2�2

10	
	 + � 1

12
−

63�2

256
	

����h

kBT
	 −

1

4
�5�1

2

48
−

3�6�

64
+

3648�2�2

175	
	���h

kBT
	2

− � 1

480
+

1669�2

10240
	���h

kBT
	3

+ 0��3,�1
3,���h

kBT
	4� ,

�82�

where �=B1��h /C1
2 and �1=D1

���h /C1
3/2. Using semiclas-

sical argument we can estimate the upper bound of � and �1
at very high temperature. For harmonic oscillation both �
and �1 are zero and Eq. �17� suggests that A=v and �0
=�2�h at �a=	. Then the energy of the oscillator will be
m�0

2v2 /2. At very high temperature since the oscillator is
more likely to be found in the excited states rather than its
ground state, we can write m�0

2v2 /2���0 /2 and it leads to
the following inequalities: ��2�2� and �1�23/4�1.

The specific heat

CL

NkB
=

1

NkB
� �Ē

�T
	

L

=
81�2

2
� kBT

��h
	2

+ �5�1
2

3
−

3�6�

4
+

648�2�2

5	
	� kBT

��h
	

+ �1 −
1215�2

32
	 − � 1

12
−

63�2

256
	���h

kBT
	2

+
1

2
�5�1

2

48
−

3�6�

64
+

3648�2�2

175	
	���h

kBT
	3

+ � 1

160
+

5007�2

10 240
	���h

kBT
	4

+ 0��3,�1
3,���h

kBT
	5� ,

�83�

This estimate shows that the relative magnitudes of the an-
harmonic force constants play a crucial role in determining
whether CL being fallen below or above the classical value
NkB. CL at high temperature ���h�kBT� and to order � and

�1
2 falls always below the classical value if only B1�

20D1
2

9�6C1
.

However, beyond this region, i.e., when B1�
20D1

2

9�6C1
the same

CL will fall above the classical value. This expression of CL
at the leading and next to leading order of the high-
temperature expansion agrees with the same obtained in Ref.
8, provided we make the following replacements in the Eq.
�83�: B1= �

3�6
, C1=�, D1= �

�10
, and �h=

�L
�2

; �, �, �, and �L are
the parameters defined in the Ref. 8. However, a little depar-
ture from Ref. 8 is observed beyond next to leading order of
the high-temperature expansion. Furthermore, Eq. �83� sug-
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gests that at the leading order of the high-temperature expan-
sion CL to order � and �1

2 varies linearly with temperature
and this observation is in agreement with that of Ref. 15. In
the harmonic limit when �=0 and �1=0, the specific heat

CL

NkB
= 1 −

1

12
���h

kBT
	2

+
1

160
���h

kBT
	4

+ 0����h

kBT
	5� ,

�84�

and it always approaches toward its classical value at very
high temperature. It is noteworthy that RMSSFA we have
adopted in Sec. II while solving for the dispersion relation is
a legitimate one because all the existing results regarding
lattice specific heat at high temperature can be reproduced to
a reasonable degree of accuracy adopting this approximation
scheme.

IV. SPECIFIC HEAT FOR B1�0

A. Low-temperature specific heat

When we decrease the system temperature, B1 increases
and D1 decreases in a manner indicated by the evaluation of
Appendix A. However to preserve the inequality in Eq. �61�
values of both � and �1 even at very low temperature must
be less than 1. Since each atom in the lattice is confined to an
one-dimensional anharmonic potential V1�u1� 
Eq. �40�� its
Hamiltonian

H =
p1

2

2m
+

m

2
��0

2u1
2 − g1

2u1
3 − g2u1

4� . �85�

Moreover, since both � and �1 �1, and we can treat the
cubic and quartic interactions as perturbation over the qua-
dratic one. The energy of the nth state to order g4 and g1

4 can
be obtained replacing g2 by −g2 in Eqs. �73� and �74�. The
energy, thus, obtained reads as

�n��� = b̄0 + n��0 − b̄1n − b̄2n2 − b̄3n3 + 0�g6,g1
6� , �86�

where

b̄0 =
��0

2
−

3�2g2

8m�0
2 −

11�2g1
4

32m�0
4 −

21�3g4

32m2�0
5 + 0�g6,g1

6� ,

b̄1 =
3�2g2

4m�0
2 +

15�2g1
4

16m�0
4 +

59�3g4

32m2�0
5 + 0�g6,g1

6� ,

b̄2 =
3�2g2

4m�0
2 +

15�2g1
4

16m�0
4 +

51�3g4

32m2�0
5 + 0�g6,g1

6� ,

b̄3 =
17�3g4

16m2�0
5 + 0�g6,g1

6� . �87�

The partition function

Z��,�� = �
n=0

�

exp�− ��n���
 = exp�− ��b̄0 + n��0 − b̄1n

− b̄2n2 − b̄3n3�
 �88�

of � wave-vector mode at temperature T. We expand

exp���b̄1n+ b̄2n2+ b̄3n3�
 to order g1
4 and g4,

Z��,�� = e−�b̄0�1 −
�b̄1

��0

�

��
+

2�b̄2 + ��b̄1�2

2���0�2

�2

��2

−
�b̄3 + �2b̄1b̄2

���0�3

�3

��3 +
��b̄2�2

2���0�4

�4

��4

+ 0�g6,g1
6��Z1��,�� , �89�

where

Z1��,�� = �
n=0

�

exp�− ���0n
 =
1

1 − e−���0
. �90�

Using Eq. �90� in Eq. �89� we obtain

ln Z��,�� = − �b̄0 + ln Z1 − �b̄1�1 − Z1� + �b̄2�1 − 3Z1 + 2Z1
2�

− �b̄3�1 − 7Z1 + 12Z1
2 − 6Z1

3� −
��b̄1�2

2
�Z1 − Z1

2�

+ �2b̄1b̄2�3Z1 − 7Z1
2 + 4Z1

3� −
��b̄2�2

2
�9Z1 − 37Z1

2

+ 48Z1
3 − 20Z1

4� + 0�g6,g1
6� . �91�

The average energy of the system reads as

Ē = −
N

	

�

��
�

0

	

d� ln Z��,�� = N
�

��
��

i=1

4

ti	 . �92�

In the final step of this equation we have changed the
integration variable of ti for i=2,3 ,4 from � to x, where
x=xD sin �

2 , and xD=TD� /T. Here TD� =�2��h /kB, being the
characteristic temperature of the system. Now ti
�i=1, . . . ,4� reads as

t1 =
�

	
�

0

	

d�b̄0,

t2 =
2

	
�

0

xD dx

�xD
2 − x2

ln�1 − e−x� ,

t3 = −
2�

	
�

0

xD dx

�xD
2 − x2

� b̄1 + b̄2 + b̄3

ex − 1
+

2b̄2 + 6b̄3

�ex − 1�2

+
6b̄3

�ex − 1�3� ,
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t4 = −
4�2

	
�

0

xD dx

�xD
2 − x2

b̄1
2� 1

ex − 1
+

6

�ex − 1�2 +
10

�ex − 1�3

+
5

�ex − 1�4� . �93�

We use Eq. �8� to write b̄0 as a function of � and evaluate t1
by performing straightforward integration over �. To evalu-

ate ti �i=2,3 ,4� we first write b̄i �i=1,2 ,3� using Eq. �8� as
a function of x. Since the integrals at leading order of the
low-temperature �T�TD� � expansion gets simplified, we next
use the quoted results from Appendix C and evaluate those ti
�i=2,3 ,4�. Finally at very low temperature �T�TD� � the av-
erage energy

Ē

N��h
=

�2

	
��h − �9�6�

64
+

11�1
2

48
+

273�2�2

160	
	

+
	�2

6
� kBT

��h
	2

+
2�2	3

15
�3�6� +

20�1
2

3
	� kBT

��h
	5

+
2 046 841.35�2

	
� kBT

��h
	8

+ 0��3,�1
3,e−TD� /T� .

�94�

Therefore, specific heat

CL

NkB
=

1

NkB
� �Ē

�T
	

L

=
�2	

3
� kBT

��h
	 +

2�2	3

3
�3�6� +

20�1
2

3
	� kBT

��h
	4

+
16 374 730.8�2

	
� kBT

��h
	7

+ 0��3,�1
3,e−TD� /T� .

�95�

Here, we see that CL to leading order in low-temperature
�T�TD� � expansion varies as T, and thus, it is in conformity
with Debye’s T law in one dimension. This leading-order
result matches with that of in Ref. 8; however, departure is
observed in the nonleading orders. Since the nonleading
terms of Eq. �95� are positive definite, the specific heat de-
creases with the decrease in anharmonicity at low tempera-
ture. In the harmonic limit when �=0 and �1=0, the specific
heat

CL

NkB
=

�2	

3
� kBT

��h
	 + 0�e−TD� /T� , �96�

and it varies as T at very low temperature �T�TD� �.

B. High-temperature specific heat

The specific heat of this system at very high temperature
is obtained by replacing � by −� in Eq. �83�,

CL

NkB
=

1

NkB
� �Ē

�T
	

L

=
81�2

2
� kBT

��h
	2

+ �5�1
2

3
+

3�6�

4
+

648�2�2

5	
	� kBT

��h
	

+ �1 −
1215�2

32
	 − � 1

12
−

63�2

256
	���h

kBT
	2

+
1

2
�5�1

2

48
+

3�6�

64
+

3648�2�2

175	
	���h

kBT
	3

+ � 1

160
+

5007�2

10 240
	���h

kBT
	4

+ 0��3,�1
3,���h

kBT
	5� .

�97�

Here, we see that CL always falls above its classical value
NkB. Experiments in computer in case of Lenard-Jones
lattice16 also confirm this result �simulation time up to 107

time steps�; however, the temperature beyond which it occurs
is almost close to the melting temperature of the lattice. On
the other hand, the result of computer simulations in case of
FPU model17 shows that the specific heat always tends to its
classical value at very high temperature. In the harmonic
limit when �=0 and �1=0, the specific heat

CL

NkB
= 1 −

1

12
���h

kBT
	2

+
1

160
���h

kBT
	4

+ 0����h

kBT
	5� ,

�98�

and it always approaches toward its classical value at very
high temperature.

V. CONCLUSION

In this paper we have solved the lattice equation of mo-
tion involving terms up to third order in lattice displacement
using RMSSFA to obtain a seminonperturbative dispersion
relation. The nature of phonon density of states curves for
positive B1 show some close resemblance with the experi-
mental observations. At very low temperature, the specific
heat of this system to leading order in large positive B1 var-
ies as square root of temperature and it obeys Debye’s T law
in one dimension for small negative B1. At very high tem-
perature, the specific heat may fall below or above its clas-
sical value depending on the relative magnitudes of B1 and
D1 for B1�0, and it always falls above its classical value for
B1�0.

The analysis of lattice equation of motion in the perspec-
tive of the phenomenology of lattice has provided constraints
on the signs of the force constants involved in the equation
of motion. It suggests that D1 must always be positive and B1
may take either positive or negative value. The criteria for
stability of the lattice structure are 1+���1 and �+�1�1
for B1�0 and B1�0, respectively. Therefore for B1�0,
treating � as a free parameter that can take any value ranging
from 0 to �, we have kept �1�1 and the choice couplings is
consistent too with the inequality for B1�0. However, the
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inequality for B1�0 suggests that both � and �1 must always
be less than 1. So we have taken �1�1, keeping � as a free
parameter lying in the range 0���1−�1 for B1�0. This
analysis essentially suggests that we can always treat the
quadratic term as a perturbation over the rest two of the
equation of motion. The difficulty in solving this equation
still remains even if one treats the quadratic term as pertur-
bation over the rest ones. We have adopted RMSSFA that
essentially reduces the equation into an effective equation of
the mode of wave vector � of the lattice displacement. The
term “effective” indicates that the effects of fluctuations of
other modes around the mode of wave vector � are included
in the equation through their root mean-square value, evalu-
ated over the entire lattice. We have solved the effective
equation and obtain the dispersion relations to order �1

2 both
for positive and negative B1. The dispersion curves have
some interesting features. When �1 is kept fixed the maxi-
mum value of the frequency ��max�, which generally occurs
at the boundary of the Brillouin zone, increases and de-
creases for positive and negative B1, respectively, with the
increase in �. However, when � is kept fixed �max decreases
for both positive and negative B1 with increasing �1. More-
over, when B1�0, prominent undulations in the dispersion
curve for � fixed at 0.1 is observed at �1=0.9, and those
undulations start decreasing with the decrease in �1. The
effect of those undulations on the plot of phonon density of
states are readily observed for positive B1. There occur
maxima and relatively flatter minima at the low- and high-
frequency side of the density of states curve, respectively.
The nature of the density of states curves for B1�0 has close
similarity with the experimentally observed ones for Al �re-
ported in Ref. 22�. Moreover for � fixed at a certain value, as
�1 increases the peak or the maxima of density of states
curve gets redshifted, and the similar behavior was also re-
ported in Ref. 15 for Nb with the decrease in temperature.
However, the density of states plot for negative B1 shows no
such interesting features that are close to the existing experi-
mental findings. Therefore, in the perspective of the study
mentioned above the model of anharmonic lattice with posi-
tive B1 emerges as a good candidate for the description of a
monoatomic crystal.

The physical picture that emerges out of this study clearly
indicates that the anharmonic terms in the lattice equation of
motion, and their relative magnitudes play crucial roles in
determining the nature of density of states of the solid. For
lattice with B1�0, the competition between the linear and
the quadratic terms of equation of motion in the medium
wavelength region leads to the appearance of peaks in the
density of states at medium frequency region, and the domi-
nation of the cubic term over the quadratic one in the smaller
wavelength region leads to the significant decrease in the
density of states at higher frequency region. However, for
lattice with B1�0, there is a competition only between the
linear term and the nonlinear terms of the equation of motion
over the entire wavelength range and, thus, leading to an
increase in the density of states over the entire frequency
range.

The specific heat of the system shows some interesting
properties both for positive and negative B1. For positive B1
and large � it varies as �T at low temperature �T�TD�. This

result is a significant departure from Debye’s T law in one
dimension. However, for small positive B1 the high-
temperature specific heat at leading and next to leading order
agrees with the previous investigation,8 and a slight depar-
ture is observed beyond next to leading order. This agree-
ment to a reasonable degree of accuracy with the previous
investigation also justifies the validity of RMSSFA scheme
adopted in this paper. The estimate shows that at high tem-
perature ���h�kBT� and to order � and �1

2, the specific heat
will fall below or above the classical value if B1 is greater

than equal to or less than
20D1

2

9�6C1
, respectively. The lattice spe-

cific heat for B1�0 obeys Debye’s T law at very low tem-
perature �T�TD� �, and it falls above its classical value at very
high temperature �T�TD� �.
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APPENDIX A: TEMPERATURE DEPENDENCE
OF B1 AND D1

We take a monoatomic lattice described by the Lagrang-
ian

L =
m

2 �
s
�dus

dt
	2

−
C1

2 �
s

�us − us+1�2 +
D1

3 �
s

�us − us+1�3

−
B1

4 �
s

�us − us+1�4. �A1�

Translation symmetry of L in units of a and the cyclic
boundary condition on us�t�, discussed in Chap. 3 of Ref. 24,
suggest the following Fourier expansion for us�t�:

us�t� =
1

�mN
�

q

Qq�t�eiqas, �A2�

where as is the equilibrium coordinate of the sth particle of
the lattice and N is the total number of sites in the lattice.
Since us is real, we must have Q−q=Qq

�. Finally in terms of
Qq�t�’s the Lagrangian reads as

L =
1

2�
q


Q̇q�t�Q̇−q�t� − �0
2�q�Qq�t�Q−q�t��

+
iD1

�9m3N
�

q1,q2

V3�q1,q2�Qq1
�t�Qq2

�t�Q−q1−q2
�t�

−
B1

4m2N
�

q1,q2,q3

V4�q1,q2,q3�Qq1
�t�Qq2

�t�Qq3
�t�

�Q−q1−q2−q3
�t� , �A3�

where

�0
2�q� =

4C1

m
sin2�qa/2� , �A4�

V3�q1,q2� = 8 sin�q1a/2�sin�q2a/2�sin��q1 + q2�a/2
 ,

�A5�
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V4�q1,q2,q3� = − 16 sin�q1a/2�sin�q2a/2�sin�q3a/2�

�sin��q1 + q2 + q3�a/2
 . �A6�

Lagrangian in Eq. �A3� describes an interacting theory of
phonons. The 1PI four-point Green’s function25,26 of this
theory to order B1

2 at nonzero temperature reads as 
the rel-
evant Feynman diagrams are shown in Fig. 5�

��4��� j,qj� =
6B1

m2N
V4�q1,q2,q3��1 −

48iB1

m2N�
J4�� j,qj� + 0�B1

2�� ,

�A7�

where � j and qj �j=1, . . . ,4� are the frequencies and wave
vectors of the external phonons. Energy and momentum con-
servations at each vertex of the diagrams in Fig. 5 imply that
�1+ ¯ +�4=0 and q1+ ¯ +q4=0.

Here the integrals are

J4�� j,qj� = − �2�
q

�
r=2

4 �
−�

� d�

2	
sin2�qa/2��F��,q�sin2��q + q1

+ qr�a/2
�F��1 + �r + �,q1 + qr + q� , �A8�

where the Feynman propagator

�F��,q� =
1

�2 − �0
2�q�

�A9�

in frequency and wave-vector space. In order to evaluate
��4��� j ,qj� at nonzero temperature we use the imaginary
time formalism of finite-temperature field theory.27,28 In the
imaginary time formalism we make the following replace-
ments in the frequency integral and the frequency:

�
−�

� d�

2	
→

i

��
�
n�Z

and � →
2	ni

��
, �A10�

where �=1 /kBT. Moreover, as we are dealing with a lattice
having large number of sites �N�1� we replace the discrete
sum over q by the integral

�
q

→
Na

2	
�

−	/a

	/a

dq . �A11�

We use Eqs. �A9�–�A11� in Eq. �A8� and compute the dis-
crete sum using the formula

�
n�Z

1

4	2n2 + x2 =
1

x
�1

2
+

1

ex − 1
	 . �A12�

We perform the integration over q at low temperature

�T�T0, where T0= 2�
kB

�C1

m �. Finally at nonzero temperature
the four-point 1PI Green’s function

��4��� j,qj,T� =
6

m2N
B1�T�V�q1,q2,q3� + �̄�4��� j,qj,T�

+ 0�B1
3� , �A13�

where �̄�4� is a � j-dependent part of ��4� and is not relevant
for our present purpose and the temperature-dependent force
constant

B1�T� = B1�1 −
9�2B1

2	C1
2 ��h�1 + 	2� T

T0
	2

+ 0�e−T0/T��
+ 0�B1

2�� . �A14�

It is clear that as we reduce the temperature B1�T� increases
when B1�0 and decreases when B1�0. Physically it im-
plies that as we reduce the temperature the interaction
strength for attraction and repulsion between the neighboring
atoms in the crystal increases and decreases, respectively.

The 1PI three-point Green’s function to order D1
3 reads as


the relevant Feynman diagrams are shown in Fig. 6�

��3��� j,qj� =
2iD1

�m3N
V3�q1,q2��1 −

128D1
2

3m3N�2J3�� j,qj�

+ 0�D1
3�� , �A15�

where � j and qj �j=1,2 ,3� are frequencies and wave vectors
of the external phonons. The integral

J3�� j,qj� = − i�3�
q
�

−�

� d�

2	
sin�qa/2�

�sin2��q1 + q2�a/2
sin2

���q1 + q2 + q�a/2
�F��q��F�� + �1,q + q1�

��F�� + �1 + �2,q + q1 + q2� . �A16�

We evaluate this integral using the same method outlined for
J4�� j ,qj� and, hence, obtain

D1�T� = D1�1 +
3�2D1

2

4	C1
3 ��h�1 +

5	2

8
� T

T0
	2

+ 0�e−T0/T��
+ 0�D1

3�� . �A17�

As we increase the temperature D1�T� increases. So it be-
haves in the same manner as B1�T� does with temperature for
B1�0.

+ + +

FIG. 5. Feynman diagrams for four-point 1PI Green’s function
to order B1

2.

+

FIG. 6. Feynman diagrams for three-point 1PI Green’s function
to order D1

3.
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APPENDIX B: �n USING BOHR-SOMMERFIELD
QUANTIZATION CONDITION

Hamiltonian

H =
p2

2m
+

m

2
��0

2x2 + g2x4� . �B1�

Since the system is conservative, H=�, where � is the total
energy of the system. To obtain the quantized energy values
we use the BS quantization condition,

� pdx = nh , �B2�

where n is large. We write p in terms of � and x using Eq.
�B1�. The BS condition then reads as

�8m�l−I��� = nh , �B3�

where

l
 = �� 2�

mg2 +
�0

4

4g4 

�0

2

2g2�1/2

,

I��� = �
0

1

dtt−1/2��1 − t��1 + �t� , �B4�

� = l−
2/l+

2 . �B5�

When g is very large �, I���, and l− have the following
expansions in powers of 1 /g:

� = 1 −�m�0
4

2�g2 + ¯ ,

I��� = I�1� −�m�0
4

2�g2 I��1� + ¯ ,

l− = � 2�

mg2	1/4�1 −�m�0
4

8�g2 + ¯� , �B6�

We substitute Eq. �B6� in Eq. �B3� and solve the equation
iteratively for � to leading order in g,

�n = �m	4�4g2

8I4�1� 	1/3
n4/3 + 0�1/g2/3� , �B7�

where

I�1� =
�	��1/4�
3��3/4�

. �B8�

We write �n using Eqs. �8�, �18�, and �B8� in Eq. �B7� as

�n = ��1 − cos �a�n4/3 + 0�1/�1/3� . �B9�

APPENDIX C: INTEGRALS AT LOW TEMPERATURE

At very low temperature, xD�1 and the integral

I0 = �
0

xD dx

�xD
2 − x2

ln�1 − e−x� �
1

xD
�

0

�

dx ln�1 − e−x�

= −
1

xD
�

0

�

dx
x

ex − 1
= −

	2

6xD
+ 0�e−xD� . �C1�

Similarly we evaluate the leading-order contributions of the
following integrals:

I1 = �
0

xD dx

�xD
2 − x2

x�−1

ex − 1
=

1

xD
�������� + 0�e−xD� , �C2�

I2 = �
0

xD dx

�xD
2 − x2

x�−1

�ex − 1�2 =
1

xD
����
��� − 1� − �����

+ 0�e−xD� , �C3�

I3 = �
0

xD dx

�xD
2 − x2

x�−1

�ex − 1�3 =
1

2xD
����
��� − 2� − 3��� − 1�

+ 2����� + 0�e−xD� , �C4�

I4 = �
0

xD dx

�xD
2 − x2

x�−1

�ex − 1�4 =
1

6xD
����
��� − 3� − 6��� − 2�

+ 11��� − 1� − 6����� + 0�e−xD� . �C5�
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